tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli.
نویسندگان
چکیده
The requirements for polynucleotide-dependent hydrolysis of ATP and for proteolytic cleavage of phage lambda repressor have been examined for both the wild-type (recA+ protein) and the tif-1 mutant form [tif(recA) protein] of the recA gene product. The recA+ and tif(recA) proteins catalyze both reactions in the presence of long single-stranded DNAs or certain deoxyhomopolymers. However, short oligonucleotides [(dT)12, (dA)14] stimulate neither the protease nor the ATPase activities of the recA+ protein. In contrast, these short oligonucleotides activate tif(recA) protein to cleave lambda repressor without stimulating its ATPase activity. Moreover, both the ATPase and protease activities of the tif(recA) protein are stimulated by poly(rU) and poly(rC) whereas the recA+ protein does not respond to these ribopolymers. We have purified the recA protein from a strain in which the tif mutation is intragenically suppressed. This mutant protein (recA629) is inactive in the presence of (dT)12, (dA)14, poly(rU), and poly(rC) for lambda repressor cleavage and ATP hydrolysis. These results argue that the tif-1 mutation (or mutations) alters the DNA binding site of the recA protein. We suggest that in vivo the tif(recA) protein is activated for cleaving repressors of SOS genes by complex formation with short single-stranded regions or gaps that normally occur near the growing fork of replicating chromosomes and are too short for activating the recA+ enzyme. This mechanism can account for the expression of SOS functions in the absence of DNA damage in tif mutant strains.
منابع مشابه
Suppression of the UV-sensitive phenotype of Escherichia coli recF mutants by recA(Srf) and recA(Tif) mutations requires recJ+.
Mutations in recA, such as recA801(Srf) (suppressor of RecF) or recA441(Tif) (temperature-induced filamentation) partially suppress the deficiency in postreplication repair of UV damage conferred by recF mutations. We observed that spontaneous recA(Srf) mutants accumulated in cultures of recB recC sbcB sulA::Mu dX(Ap lac) lexA51 recF cells because they grew faster than the parental strain. We s...
متن کاملFunction of nucleoside triphosphate and polynucleotide in Escherichia coli recA protein-directed cleavage of phage lambda repressor.
Escherichia coli recA protein catalyzes a specific proteolytic cleavage of repressors in vitro when it is activated by interaction with a single-stranded polynucleotide and nucleoside triphosphate. The ATP analogue adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) satisfies the NTP requirement. We show here that despite its activity in repressor cleavage, ATP gamma S is hydrolyzed at a negligib...
متن کاملInhibition of RecA protein by the Escherichia coli RecX protein: modulation by the RecA C terminus and filament functional state.
The RecX protein is a potent inhibitor of RecA activities. We identified several factors that affect RecX-RecA interaction. The interaction is enhanced by the RecA C terminus and by significant concentrations of free Mg(2+) ion. The interaction is also enhanced by an N-terminal His(6) tag on the RecX protein. We conclude that RecX protein interacts most effectively with a RecA functional state ...
متن کاملExpression of a Chimeric Protein Containing the Catalytic Domain of Shiga-Like Toxin and Human Granulocyte Macrophage Colony-Stimulating Factor (hGM-CSF) in Escherichia coli and Its Recognition by Reciprocal Antibodies
Fusion of two genes at DNA level produces a single protein, known as a chimeric protein. Immunotoxins are chimeric proteins composed of specific cell targeting and cell killing moieties. Bacterial or plant toxins are commonly used as the killing moieties of the chimeric immunotoxins. In this investigation, the catalytic domain of Shiga-like toxin (A1) was fused to human granulocyte macrophage ...
متن کاملA RecA Mutant, RecA, Suppresses the Recombination Deficiency of the RecBCD–χ* Interaction in Vitro and in Vivo
0022-2836/$ see front matter © 2006 E In Escherichia coli, homologous recombination initiated at double-stranded DNA breaks requires the RecBCD enzyme, a multifunctional heterotrimeric complex that possesses processive helicase and exonuclease activities. Upon encountering the DNA regulatory sequence, χ, the enzymatic properties of RecBCD enzyme are altered. Its helicase activity is reduced, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 78 10 شماره
صفحات -
تاریخ انتشار 1981